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1 AUDIO TO AUDIO UNIT TRANSLATION

1.1 BASE PAPERS

[1] Kim, M., Choi, J., Kim, D., & Ro, Y. M. (2023). Textless Unit-to-Unit Training for Many-to-
Many Multilingual Speech-to-Speech Translation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 32, 3934-3946. Kim et al.| (2023)

[2] Choi, J., Park, S. J.,, Kim, M., & Ro, Y. M. (2024). AV2AV: Direct Audio-Visual Speech
to Audio-Visual Speech Translation with Unified Audio-Visual Speech Representation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (pp.
27315-27327). |Chot et al.[ (2024)

1.2 MOTIVATION
Current audio-visual translation methods typically involve several sequential steps:

* STT (Speech-to-Text): Converts original audio-visual speech into text transcription.
* Machine Translation (MT): Translates the transcribed text into the target language.

* TTS (Text-to-Speech) and Video Generation: Synthesizes speech audio and generates
corresponding video (e.g., lip movements) from the translated text.

To address the limitations of these multi-step pipelines, prior research has proposed an ”End-to-End”
approach. This approach directly translates input audio-visual speech into the target language’s
audio-visual speech, thereby eliminating intermediate text and speech processing steps.

However, these papers only focused on and tested translations for SVO (Subject-Verb-Object) lan-
guages, such as English, French, Spanish, and Chinese. They excluded SOV (Subject-Object-Verb)
languages like Korean and Japanese.

The overall system architecture is illustrated in Figure[I] Please refer to this figure to understand the
complete pipeline.

Audio Speech Unit

0000 0000 .|||||.|..||||.|.
Audio Speech Unit
(Target Language) Target Speech

: :

Transformer Transformer
Encoder Decoder Vacoder
HuUBERT T T T
0000 0O
T Audio Speech Unit Masked I||||IIIIII||IIII [:][:][:][:]

(Source Language)

Audio Speech Unit
(Target Language)

Audio Speech Unit

Source Speech (Target Language)

Source Speech

Figure 1: Figure. 1: Architectural diagram of the proposed Audio-to-Audio Speech Unit Transla-
tion system. It illustrates the three main stages: (left) extracting discrete audio speech units from
source speech using HUBERT and a Quantizer, (middle) translating source language units to target
language units via a Transformer Encoder-Decoder, and (right) synthesizing the target speech from
the generated units and source speech using a Vocoder.

1.3 CONTRIBUTION

* Code Reproduction: We reconstruct the model architecture, training parameters, and pre-
processing steps by referencing the original papers. Through actual training experiments,
we optimize the implementation for better performance.
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* Language Expansion: We propose methods to expand the translation capabilities to SOV
(Subject-Object-Verb) languages like Korean and Japanese, which have different grammat-
ical structures from SVO languages.

1.4 PROPOSED METHOD

1.4.1 DATASET

* Multilingual Alhub data: |AThub Dataset
* LibriSpeech: [LibriSpeech Dataset

1.4.2 FRAMEWORK

* [Fairseq and speech-resynthesis
* PyTorch

1.4.3 HARDWARE SPECIFICATION
¢ Nvidia A6000 48GB GPU

1.4.4 MODEL SPECIFICATIONS

Model Audio input HuBERT | Transformer | Vocoder
Specifications | e Segment Size: 8960 URL URL URL

e Code Hop Size: 320

e Sampling Rate: 16000 Hz

o FFT Size: 1024

e Hop Size: 256

e Window Size: 1024

e Frequency Range: 0-8000 Hz
o Number of Mel Bands: 80

1.4.5 HUBERT

The detailed structure of the HuBERT model is shown in Figure [2] Please refer to this figure to
understand the internal architecture.

Acoustic Unit Discovery System
(e.g., K-means on MFCC)

Gl Gl G GO G G

HUBERT | | ¥

| Transformer I
I i

[x | [Mskj [msk] [msk] | - | | - |

| CNN Encoder |

1

A 1
AU

Figure 2: Hubert model structure

1. K-means Clustering on MFCC Features: We perform K-means clustering on the ex-
tracted MFCC (Mel-frequency cepstral coefficients) feature vectors.

2. Using as ”Pseudo-Labels” or Target Units”: These clustered results are then used as
“pseudo-labels” or “target units.” This helps us find repeated sound patterns (like basic


https://aihub.or.kr/aihubdata/data/view.do?dataSetSn=71524
https://www.openslr.org/12
https://github.com/facebookresearch/fairseq/tree/main/fairseq
https://github.com/facebookresearch/speech-resynthesis/blob/main/examples/speech_to_speech_translation/models.py
https://github.com/hytric/Ko_utut/tree/main/speech2uinit#hubert-specifications
https://github.com/hytric/Ko_utut/tree/main/unit2unit#architecture
https://github.com/hytric/Ko_utut/tree/main/unit2speech#model-specification
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speech sounds or phonemes) within the speech data. We then turn these patterns into dis-
tinct, countable units. The initial HuUBERT model uses these units as its ’correct answers.”

3. Masking and Prediction: Next, we apply masking. The model then learns to predict the
K-means cluster ID for the masked parts of the speech, using the surrounding unmasked
speech information.

4. Loss Function: We train the model using a classification loss, like Cross-Entropy loss.

5. Feature Extraction for HUBERT (mHuBERT): Speech features are taken from the 11th
layer of the HuBERT (or mHuBERT) model.

6. Quantization to Speech Units: These features go through K-means clustering and are
turned into 1,000 distinct speech units, which act like a fixed vocabulary size.

7. ”Ours” Model: Our specific model ("Ours”) uses 500 units because, based on our experi-
ence, this number gives the best distribution of these units.

Frequency of Each HUBERT Unit ID

600000

500000 -

400000

300000

Frequency

200000 -

100000

HUBERT Unit ID

Figure 3: English Hubart output, 500 unit distribution

1.4.6 VANILLA TRANSFORMER

The Transformer model can translate between multiple languages, based on unit-to-unit translation
methodology [15]|Lee et al.[(2023).

* Language Identification: To know which language to translate from, the model uses spe-
cial language tags (like language tokens) at the beginning of a sentence, such as <en>
for English or <kr> for Korean. For instance, in English, you’d input <en> unitl,
unit2,

* Translation Direction: To specify the target language (e.g., if you want to translate into
English, you’d input <en>), you provide this token to the decoder part of the model. This
tells the model to start translating into that specific language.

* Learning Method: The model learns by using a masking technique. Masking involves
hiding certain words in a sentence and having the model predict what those hidden words
should be. This helps the model understand the context and learn to translate more accu-
rately.

The Transformer architecture used in our system is illustrated in Figure[d Please refer to this figure
for architectural details.

1.4.7 VOCODER
The Vocoder is like a voice maker. Its main job is to turn voice “units” into actual sound waves.

* Basic Structure: It mainly follows the design of HiFi-GAN, which is based on voice units.
This means it creates raw sound waves (waveforms) from translated AV voice units.
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Figure 4: Vanilla Transformer structure

» Speaker Voice Extraction: It takes the sound of an existing voice (as a Mel spectrogram)
and makes a single speaker embedding, called a d-vector [97]. This helps it copy the
speaker’s voice quality.

» Speaker Info Added: This extracted d-vector is attached (concatenated) to each feature
vector of the voice units.

[ Voice Unit 1 Feature ] — [ Voice Unit 1 Feature | d-vector ]
[ Voice Unit 2 Feature ] — [ Voice Unit 2 Feature | d-vector ]
[ Voice Unit 3 Feature ] — [ Voice Unit 3 Feature | d-vector ]

[ Voice Unit N Feature ] — [ Voice Unit N Feature | d-vector ]

* Sound Wave Creation: These features, now combined with speaker info, are sent to the
standard HiFi-GAN [92] to finally create the sound waves.

The complete vocoder architecture is shown in Figure [5] Please refer to this figure to understand
how voice units are converted to speech.

Vocoder
||||‘|||||
—_— Speech Encoder
Source Speech ]

Speech decoder pumd ”||||I|“

©e®e[ T

Audio Units

Figure 5: Vocoder model structure, Unit2speech is Hifi-GAN

Duration Predictor a module that guesses how long each voice unit should last.

* This is used to make sure data like text, video, and audio stay in sync.

 Structure: It’s like the duration predictor in TTS (Text-to-Speech) models. It has two 1D
convolution layers and one classifier.

* Our Approach: To copy the voice quality (timbre) of the input audio, our vocoder takes the
original audio as input. To keep these two parts in sync, we added the Duration Predictor,
which was suggested in the original Av2av paper.
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» However, it didn’t actually make the performance better. In fact, it caused the speech to
sound stretched out.

* So, we did not apply it.
1.4.8 SVO (SUBJECT-VERB-OBJECT) AND SOV (SUBJECT-OBJECT-VERB) CONVERSION

Our approach to handling different language structures is shown in Figure [6] Please refer to this
figure to understand the conversion process.

English | | || Love || You |
Previous Spanish |m|| te || amo | >
Franch |Je || te || aime |
| | || Love || You | Translation
English | | || Love || You | | Lt ” Al ” L-I(%) | mode!
Ours
Korean | Lt || H&) || At s | | | || You || Love |
BB R

Figure 6: Our approach, SVO and SOV Conversion

* When we trained our model with just Korean-English pair datasets, without changing the
data format, we faced a problem: the word sounds became muffled or unclear.

» This happened because the model struggled with matching words between the two lan-
guages during translation.

* By using mutual conversion (like SVO , SOV), the Transformer model focused less on
finding words with the same meaning and more on matching sounds in the same time
frame. This made the learning task simpler for the model.

Qur Approach

So, we used an LLM (Large Language Model), specifically Llama 3.1 8B Instruct [5]
(2023)), to change the word order. We did this using the voice transcripts we already had in our
dataset.

After that, we used the ’Google Text-to-Speech’” model to turn these new texts into audio. We
then used this new audio as our training (TR) dataset. The vocoder used in this process is based on

HiFi-GAN [10] (2020).

The dataset pairing structure is illustrated in Figure[/| Please refer to this figure to understand how
the training pairs are constructed.

English Dataset Korean Dataset
Original Pair Rearranged
English speech Korean speech
Rearranged Pair Original
English speech Korean speech

Figure 7: Audio Dataset Learning Pairs
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Original Speech Script Rearranged Speech Script

In particular, he thinks visual images work in | In particular, he visual images language like
symbolic function like language. symbolic function work.

"£3] J= AlZf o|OjX|7t elojet 22 7|& X J|s& §tria 2ot “E35| = MZIBHCH AZE 0|0|X|7} LBt D 7|5 H 7|S lojxz”,

Table 1: Comparison of Original and Rearranged Speech Scripts

Model BLEU COMET
Textless NLP 66.9 0.1338
AV2AV 60.1 0.1587

Our Model 42.8 0.1009

Table 2: Model Performance Comparison

1.5 METRIC

* Korean Language Characteristics and Current Evaluation Method Issues: The Ko-
rean language is very different from English. Korean words are often made of smaller
meaning units (morphemes), and word forms can change a lot based on grammatical mark-
ers like particles or endings.

* Lack of Similar Models for Comparison: There are no other English-Korean S2ST
(Speech-to-Speech Translation) models currently available. Because of this, we don’t
have a direct comparison for our model.

* Conclusion on Scoring: Due to these two conditions, the existing scoring methods are
not suitable for Korean. Therefore, we measured the score only using the generated
English speech.

1.6 CONCLUSION

* The output speech isn’t perfect, but it’s understandable.
 The translated speech doesn’t have a steady pitch, and there’s a lot of background noise.

¢ It should work better if trained with more diverse Korean voices.

1.7 FUTURE WORKS

* Need for a Model Reflecting Korean Characteristics: Due to the nature of the Korean
language, the same word can sound different based on its position, or its form can change
significantly due to particles and endings.

* Verb Position Challenge: The position of the verb is the point of greatest variation. A
method is needed to easily incorporate verbs that are far apart in two different word orders
due to sentence structure.

* Additional Metric Provision: For Korean, evaluation is primarily done using phoneme-
based metrics. Therefore, we need to provide additional metrics that reflect this.

1.8 PAPER REVIEW
* paper review: HuBERT https://hytric.github.io/paperreview/HuBERT/
* paper review: UTUT https://hytric.github.io/paperreview/UTUT/
* paper review: AV2AV https://hytric.github.io/paperreview/AV2AV/
* paper review: HiFi-GAN https://hytric.github.io/paperreview/HiFi-GAN/


https://hytric.github.io/paperreview/HuBERT/
https://hytric.github.io/paperreview/UTUT/
https://hytric.github.io/paperreview/AV2AV/
https://hytric.github.io/paperreview/HiFi-GAN/
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2 SCENE GRAPH TO VIDEO GENERATION

2.1 BASE PAPERS

[3] Dhariwal, P., & Nichol, A. (2022). Diffusion-Based Scene Graph to Image Generation with
Masked Contrastive Pre-Training. arXiv preprint arXiv:2201.00308. [Dhariwal & Nichol| (2022))

[4] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022). High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10684—10695. [Rombach et al| (2022)

2.2  MOTIVATION

Scene Graph (SG) is a method to represent objects within a visual scene, such as an image or video,
and the relationships between those objects, in a structured graph format.

An example of Scene Graph representation is shown in Figure [§] Please refer to this figure to
understand the concept.

Subject Predicate Object

tree ==» onsideof =% house

sky

Figure 8: Scene Graph example

It describes how objects within an image are related to each other, similar to how humans understand
an image. Currently, Image Generation (IG) models that utilize scene graphs already exist [14]
(2022), and several related research papers have been published. However, this SG idea
has not yet been properly applied to Video Generation (VG).

We are focusing on this research gap and aim to apply scene graphs to video generation. To date,
there has been research on generating general images using scene graphs, but there is no existing
research specifically targeting general videos.

2.3 CONTRIBUTION

* If we can create video in a way that reflects how humans think, it’s like gaining the ability
to directly direct scenes.

» Because this feature is a very important advantage for long video generation, we addition-
ally propose a module that generates long videos.

The comparison between previous approaches and our method is illustrated in Figure[9] Please refer
to this figure to understand the architectural differences.

2.4 PROPOSED METHOD
Dataset:

* Action Genome
Framework:

* Pytorch

Hardware spec
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Figure 9: Previous (top) and Ours (bottom): SG2video Model structure
Nvidia A6000 48G gpu
SG EMBEDDING

Utilizing SG Embedding Model Structure Proposed in Existing Image Generation Models:
Relational Graph Convolutional Network (R-GCN) [6] [Schlichtkrull et al.| (2018)

R-GCN is a method that learns directed graphs using a CNN.

In the graph convolution net, Triplets: (Subject, Predicate, object) are separated and
learned.

In an intermediate step, triplets connected to one word are combined through an Object-
wise Pooling layer.

The SG embedding model architecture is shown in Figure[T0] Please refer to this figure to understand
the embedding process.

Finally,

we use SGClip: Learns Image Encoder (Clip model) and Graph Encoder with contrastive

learning [7]|van den Oord et al.|(2018)).

242

DIFFUSION MODEL

The Stable Diffusion model structure is illustrated in Figure[TT] Please refer to this figure to under-
stand the diffusion process.

We condition LDMs either via concatenation or by a more general cross-attention mecha-
nism [8]|Ho et al.| (2020).

Plays a decisive role in increasing computational efficiency by using the Latent Space con-
cept from VAE.

U-Net’s backbone, an encoder-decoder structure that has shown good performance in image
segmentation, etc., is suitable for effectively learning and transferring features at various
scales.

A Generator that can more flexibly condition the Diffusion Model by utilizing the Cross-
Attention mechanism.

For video generation, expands the time axis, extends the structure to 3D.

10



Jongha Kim’s project portfolio using ICLR format.
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Figure 11: Stable Diffusion Model structure

2.4.3 LONG VIDEO GENERATION

* As input to the model, existing diffusion models put a noise frame into every frame. How-
ever, for autoregressive video generation, it is applied to the very first frame.

2.5 CONCLUSION
* The results were not as good as we had hoped.
* All features are implemented in the code.
* There aren’t enough datasets that pair Scene Graphs with videos.
* The Scene Graphs didn’t always match up well with the video content (this is called poor
alignment).

11
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2.6 FUTURE WORKS

* Instead of relying on standard Scene Graph datasets, we plan to extract “task graphs” di-
rectly from video content (e.g., from instructional videos like HowTol100M [13] Miech!
et al.[(2019), by analyzing captions or key steps). These video-mined task graphs will con-
dition our diffusion model for video generation. A key challenge is effectively capturing
and representing their temporal sequences.

* Leveraging Richer Knowledge Graphs (like ConceptNet): Current Scene Graph-video
datasets are often low quality. To address this, we propose using broader knowledge bases
like ConceptNet [11] [Speer et al.| (2017) (or similar KGs built from video metadata) to
create more robust graph embeddings. These enriched embeddings, potentially using mod-
els like ALBERT [12] [Lan et al,| (2019) with a Knowledge Graph Encoder, will provide
stronger, more meaningful conditions for training our video generation models, moving
beyond simpler visual scene graphs.

12
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3 PREDICTING WATER QUALITY: EMBEDDED DEVICE DEVELOPMENT AND
SENSOR DATA ANALYSIS

3.1 MOTIVATION

Our goal is to analyze water quality data to predict pollution levels, enabling proactive water quality
management. We are particularly focused on predicting water quality in extreme conditions, such
as those found in wastewater treatment plants. Here’s how we plan to achieve this and the benefits:

* Cost Reduction with Soft Sensors: Instead of relying on expensive physical water qual-
ity measurement equipment, we will use “soft sensors” (virtual sensors powered by Al
predictions). This approach significantly reduces costs.

* Enhanced Process Control: By measuring water quality indicators at intermediate stages
where physical sensor installation is difficult, we can achieve more detailed and precise
control over chemical dosing and overall process adjustments.

The system overview is shown in Figure Please refer to this figure to understand the complete
monitoring system.

RS485 to Serial
converter

Database =i loT Server mMQTT LTE modem MCU Board
HTTP I

Power
supply

User Dashboard ((( : )))

N ——g
Sensor

Figure 12: Water quality prediction system overview

3.2 CONTRIBUTION
Our contributions include:

* Designed and implemented an [oT system for water quality monitoring with:

— Hardware featuring multiple sensors and LTE connectivity

— Firmware development using FreeRTOS

* Developed a prediction model that:

— Combines trend analysis and noise modeling

— Accurately forecasts water quality indicators using collected sensor data

13
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3.3 EMBEDDED SYSTEM DESIGN

We built an embedded device (using an MCU) to collect water qual-
ity data. The device’s design included an LTE module, water quality
sensors, internal serial communication components, and a power sup-
ply. We developed the firmware (the software for the device) using
FreeRTOS. FreeRTOS is a real-time operating system (RTOS) kernel
specifically designed for microcontrollers and small microprocessors.
A key thing with embedded systems is they need to work all day, every
day without errors. That’s why we focused hard on writing good code
for when things go wrong and for when the system needs to reboot. For
reference, see Figure T3] for the RS485 converter used in our system.

Figure 13: RS485 to se-
rial converter picture

3.4 MODEL STRUCTURE DESIGN

Sensor data is time-series data, meaning the order of the information over time is very important.
However, it often includes a lot of irregular fluctuations or 'noise,” which can make it difficult to
analyze effectively. This means we need a way to handle these noisy parts. To address this, we
developed an approach using an ensemble method with two separate models:

* A model to predict the main trends (the ’big picture’ or ’larger flow’): For this model,
predictions can be made using averaging and smoothing techniques, or by using standard
time-series based models. This is because trends in nature are less impacted by volatile,
short-lived values and more closely reflect the general direction over extended time.

* A model to predict the effects of random noise: For this part, we found that even a simple
Multi-Layer Perceptron (MLP) — without using time-series information — showed excellent
performance in predicting these random noise components. The reason is that noise tends
to be more strongly influenced by present conditions rather than by the simple passage of
time.

The ensemble model output is illustrated in Figure [T4] Please refer to this figure to understand how
trend prediction and noise modeling are combined.

TOC O A|

—tEstimated Value —True Value

Figure 14: Ensemble model output combining trend prediction and noise modeling for water quality
forecasting

We used AutoML (Automated Machine Learning) to automatically find the optimal hyperparam-
eters (settings) for each model. This automation significantly reduced the time required to identify
the best model configuration. Our approach draws inspiration from deep learning methodologies

[16][Goodfellow et al| 2016).

The AutoML hyperparameter optimization results are shown in Figure[T3] Please refer to this figure
to understand the optimization process.

14
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Figure 15: AutoML hyperparameter optimization results

3.3 CONCLUSION

* We successfully delivered a prototype (an early version of the product) to our client.
* The client is now using our predicted values to help manage their water quality.

3.3.1 EVALUATION

Our prediction error (NMAE) improved significantly, going down from 15% to 8%.

15
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A TECHNICAL SPECIFICATIONS

A.1 HARDWARE REQUIREMENTS

A.1.1 PROJECT 1: AUDIO TO AUDIO UNIT TRANSLATION
* GPU: NVIDIA A6000 48GB VRAM
¢ CPU: Intel Xeon
* RAM: 64GB DDR4

A.1.2 PROJECT 2: SCENE GRAPH TO VIDEO GENERATION
* GPU: NVIDIA A6000 48GB VRAM
¢ CPU: Intel Xeon
* RAM: 64GB DDR4

A.1.3 PROJECT 3: WATER QUALITY PREDICTION
* Embedded Device: STM32 MCU
* Connectivity: LTE Cat-1 module
* Sensors: pH, Conductivity, Temperature, Dissolved Oxygen (DO) sensors

A.2 SOFTWARE DEPENDENCIES

A.2.1 PROJECT 1: AUDIO TO AUDIO UNIT TRANSLATION
* Framework: PyTorch 1.12+, Fairseq, speech-resynthesis
¢ Python Version: 3.8+
¢ Key Libraries:

— transformers
librosa

soundfile

numpy, scipy
matplotlib

* CUDA: 11.3 or higher

A.2.2 PROJECT 2: SCENE GRAPH TO VIDEO GENERATION
* Framework: PyTorch 1.11+
* Python Version: 3.8+
* Key Libraries:

— pytorch
— opencv-python

* CUDA: 11.6 or higher

A.2.3 PROJECT 3: WATER QUALITY PREDICTION
* Embedded Firmware: FreeRTOS
* Development IDE: STM32CubelDE, VSCode
* ML Framework: scikit-learn, pandas, numpy, pytorch
* AutoML: NNI
* Communication: MQTT, UART protocols

16
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A.3 DATASETS USED

A.3.1 PROJECT 1: AUDIO TO AUDIO UNIT TRANSLATION
* Primary Dataset:

— ATlhub Multilingual Dataset: | Korean-English Speech Translation Dataset
— LibriSpeech: English Speech Recognition Corpus

* Size: Each language has 1,000 hours of paired Korean-English speech
* Format: 16kHz WAV files with transcriptions

A.3.2 PROJECT 2: SCENE GRAPH TO VIDEO GENERATION
¢ Primary Dataset: Action Genome Dataset
* Size: 10K video clips with scene graph annotations
* Resolution: Various (480p)

* Duration: 3-30 seconds per clip

A.3.3 PROJECT 3: WATER QUALITY PREDICTION
* Data Source: Company’s own internal IoT data
e Parameters: pH, Conductivity, Temperature, Dissolved Oxygen (DO), pH
¢ Predict: TOC, TN, TP
* Frequency: 5 minutes per sample

* Duration: 6 months of continuous monitoring

B CODE REPOSITORY

B.1 PROJECT 1: AUDIO TRANSLATION

* Main Repository: https://github.com/hytric/Ko_utut

* Structure:
— speech2unit/: HuBERT-based audio encoding
— unit2unit/: Transformer-based translation
— unit2speech/: Vocoder for speech synthesis

* Paper Reviews:
— HuBERT: https://hytric.github.io/paperreview/HuBERT/
— UTUT: https://hytric.github.io/paperreview/UTUT/

— AV2AV: https://hytric.github.io/paperreview/AV2AV/
HiFi-GAN: https://hytric.github.io/paperreview/HiFi-GAN/

C CONTACT INFORMATION

* Author: Jongha Kim

* Institution: Department of Electronic Engineering, Inha University
* Email: kimjongha674 @gmail.com

 GitHub: https://github.com/hytric

* Personal Blog: https://hytric.github.10/

LinkedIn: https://www.linkedin.com/in/
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Jongha Kim’s project portfolio using ICLR format.
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